Abstract

New Laboratory Measurements on Ammonia Inversion Spectrum with Implication for Planetary Atmospheres

T. R. Spilker

Jet Propulsion Laboratory

 

Microwave spectral measurements have been performed on pure room-temperature gaseous ammonia at frequencies from 1.75 to 18 GHz (1.7-17 cm), at 50-, 100-, and 300-torr pressures. These measurements are part of a laboratory programto measure the microwave absorption spectrum of ammonia, under conditions applicable to giant planet atmospheres, now in progress at the Jet Propulsion Laboratory. The pure ammonia data reported here agree well with previous data by Bleaney and Loubser (1950) at 100 and 300 torrs, and with predictions of the absorptivity formalism published by Burge and Gulkis. Success with pure ammonia but failure with mixtures of ammonia in hydrogen and helium (Spilker, 1990) indicates that the Berge and Gulkis formalism does not correctly handle foreign-gas effects on ammonia inversion lines. This may require modifying conclusions of radio astronomical and radio occultation studies that used this formalism. Notably, a suggested depletion of ammonia and superabundance of hydrogen sulfide may have been exaggerated as a result of inaccuracies in the Berge and Gulkis formalism.

 

For full paper: Journal of Geophysical Research, Vol. 98, NO. E3, pp 5539-5548, March 25, 1993.

 

Back